Towards transparency and privacy in the online advertising business

Web Identity Translator: Behavioral Advertising and Identity Privacy with WIT

Fotios Papaodyssefs, Costas Iordanou, Jeremy Blackburn, Nikolaos Laoutaris,  Konstantina Papagiannaki

DOI: 10.1145/2834050.2834105

Appeared in HotNets-XIV Proceedings of the 14th ACM Workshop on Hot Topics in Networks


Online Behavioural targeted Advertising (OBA) has risen in prominence as a method to increase the effectiveness of online advertising. OBA operates by associating tags or labels to users based on their online activity and then using these labels to target them. This rise has been accompanied by privacy concerns from researchers, regulators and the press. In this paper, we present a novel methodology for measuring and understanding OBA in the online advertising market. We rely on training artificial online personas representing behavioural traits like ‘cooking’, ‘movies’, ‘motor sports’, etc. and build a measurement system that is automated, scalable and supports testing of multiple configurations. We observe that OBA is a frequent practice and notice that categories valued more by advertisers are more intensely targeted. In addition, we provide evidences showing that the advertising market targets sensitive topics (e.g, religion or health) despite the existence of regulation that bans such practices. We also compare the volume of OBA advertising for our personas in two different geographical locations (US and Spain) and see little geographic bias in terms of intensity of OBA targeting. Finally, we check for targeting with do-not-track (DNT) enabled and discover that DNT is not yet enforced in the web.

Read the entire paper here.

Leave a Reply